
Discovering lenses

#kievfprog2017.1

Anton Dubovik

EPAM Systems

Update problem

data Person = Person

{ schedule :: Schedule

, street :: String

, father :: Person

}

street person

person { street = "Pearl street" }

person { street = street person ++ " avenue"}

person { father = (father person)

{ street = street (father person) ++ " avenue" } }

Update problem

person { father = (father person)

{ father = (father (father person))

{ street = street (father (father person)) ++ " avenue"

} } }

Update problem

Haskell

person' = person &

((fatherL . fatherL . streetL)

`modify` (++ " avenue"))

C++

person.father.father.street += " avenue";

Twan van Laarhoven’s
lenses

Edward Kmett’s
lens package

person { street = street person ++ " avenue"}

data Person = Person

{ schedule :: Schedule

, street :: String

, father :: Person

}

modifyStreet :: (String -> String)

-> (Person -> Person)

modifyStreet f pers = pers {street = f (street pers)}

modifyStreet (++ " avenue") person

person { father = (father person)

{ street = street (father person) ++ " avenue" } }

modifyFather :: (Person -> Person)

-> (Person -> Person)

modifyFather f pers = pers {father = f (father pers)}

(modifyFather . modifyStreet) (++ " avenue") person

(modifyFather . modifyFather . modifyStreet)

(++ " avenue")

person

(modifyFather . modifyFather . modifyStreet)

(++ " avenue")

person

(&) :: a -> (a -> b) -> b

(&) a f = f a

person &

(modifyFather . modifyFather . modifyStreet)

(++ " avenue")

Composable updates

person &

(modifyFather . modifyFather . modifyStreet)

(++ " avenue")

mod1 :: (c -> c) -> (d -> d)

mod2 :: (b -> b) -> (c -> c)

mod3 :: (a -> a) -> (b -> b)

mod1 . mod2 . mod3 ::

(a -> a) -> (d -> d)

a
b

c
d

Composable updates

type Updater b a = (a -> a) -> (b -> b)

a -> a

b -> b

Composable updates: clients

modify :: Updater b a -> (a -> a) -> (b -> b)

modify updater f b = updater f b

set :: Updater b a -> a -> (b -> b)

set updater a b = modify updater (_ -> a) b

Getters

(a -> a) -> (b -> b)

(a -> a) -> (b -> (a, b))

getAndUpdStreet

:: (String -> String)

-> (Person -> (String, Person))

getAndUpdStreet f pers =

(street pers, pers {street = f (street pers)})

Getters

(a -> a) -> (b -> b)

(a -> (a, a)) -> (b -> (a, b))

getAndUpdStreet

:: (String -> (String, String))

-> (Person -> (String, Person))

getAndUpdStreet f pers =

let (streetOld, streetNew) = f (street pers)

in (streetOld, pers { street = streetNew })

Getters

(a -> a) -> (b -> b)

(a -> (a, a)) -> (b -> (a, b))

getAndUpdStreet

:: (String -> (String, String))

-> (Person -> (String, Person))

getAndUpdStreet f pers =

let (streetOld, streetNew) = f (street pers)

in (streetOld, pers { street = streetNew })

Getters

(a -> a) -> (b -> b)

(a -> (с, a)) -> (b -> (с, b))

getAndUpdStreet

:: (String -> (с, String))

-> (Person -> (с, Person))

getAndUpdStreet f pers =

let (с, streetNew) = f (street pers)

in (с, pers { street = streetNew })

Getter and updater: clients

type UpdaterWithPayload b a =

forall c. (a -> (c, a)) -> (b -> (c, b))

get :: UpdaterWithPayload b a -> b -> a

get updater b = fst $ updater (\a -> (a, a)) b

modify :: UpdaterWithPayload b a -> (a -> a) -> (b -> b)

modify updater f b = snd $ updater (\a -> ((), f a)) b

set :: UpdaterWithPayload b a -> a -> b -> b

set updater a b = modify updater (_ -> a) b

person &

((getAndUpdFather . getAndUpdFather . getAndUpdStreet)

`modify` (++ " avenue"))

person &

get (getAndUpdFather . getAndUpdFather . getAndUpdStreet)

mod1 :: (c -> (p,c)) -> (d -> (p,d))

mod2 :: (b -> (p,b)) -> (c -> (p,c))

mod3 :: (a -> (p,a)) -> (b -> (p,b))

mod1 . mod2 . mod3 ::

(a -> (p,a)) -> (d -> (p,d))

a
b

c
d

Updating functions
type Day = Int

type Event = String

type Schedule = Day -> Maybe Event

modifyEvent

:: (Maybe Event -> Maybe Event)

-> (Schedule -> Schedule)

modifyEvent f sch = \day -> f (sch day)

getAndUpdSchedule :: UpdaterWithPayload Person Schedule

getAndUpdSchedule f pers =

let (c, schedNew) = f (schedule pers)

in (c, pers { schedule = schedNew })

Updating functions

eraseWedding :: Maybe Event -> Maybe Event

eraseWedding (Just "Wedding") = Nothing

eraseWedding x = x

person &

((getAndUpdFather . getAndUpdSchedule . modifyEvent)

`modify` eraseWedding)

(Person -> (a, Person)) -> (Person -> (a, Person))

(Schedule -> (a, Schedule)) -> (Person -> (a, Person))

(Maybe Event -> Maybe Event) -> (Schedule -> Schedule)

Updating functions

person &

((to getAndUpdFather . to getAndUpdSchedule . modifyEvent)

`modify` eraseWedding)

(Person -> (Person) -> (Person -> Person)

(Schedule -> Schedule) -> (Person -> Person)

(Maybe Event -> Maybe Event) -> (Schedule -> Schedule)

to :: ((a -> (c, a)) -> (b -> (c, b)))

-> ((a -> a) -> (b -> b))

Composing uncomposable

type Updater b a =

(a -> a) -> (b -> b)

type UpdaterWithPayload b a = forall c.

(a -> (c, a)) -> (b -> (c, b))

type Updater' b a =

(a -> Identity a) -> (b -> Identity b)

(a -> f a) -> (b -> f b)

f -> Identity: Updater'

f -> (,) c: UpdaterWithPayload

Composing uncomposable

type Setter b a = forall f.

Settable f => (a -> f a) -> (b -> f b)

type Getter b a = forall f.

Gettable f => (a -> f a) -> (b -> f b)

instance Gettable ((,) c)

instance Settable Identity

instance Gettable Identity

class Gettable f

class Gettable f => Settable f

Composing uncomposable

class Gettable f => Settable f

getterToSetter :: Getter b a -> Setter b a

getterToSetter = id

person &

((getAndUpdFather . getAndUpdSchedule . modifyEvent)

`modify` eraseWedding)

Getter Person Person

Getter Person Schedule

Setter Schedule (Maybe Event)

Setter Person Schedule

Setter Person Person

Setter, Getter: clients
get :: Getter b a -> b -> a

get getter b =

let (a, _b') = getter (\a -> (a, a)) b

in a

-- modify :: Getter b a -> (a -> a) -> (b -> b)

modify :: Setter b a -> (a -> a) -> (b -> b)

modify setter f b =

let Identity b' = setter (Identity . f) b

in b'

-- set :: Getter b a -> a -> (b -> b)

set :: Setter b a -> a -> (b -> b)

set setter a = modify setter (_ -> a)

Gettable
getAndUpdSchedule

:: (Schedule -> (c, Schedule))

-> (Person -> (c, Person))

getAndUpdSchedule f pers =

let (c, scheduleNew) = f (schedule pers)

in (c, pers { schedule = scheduleNew })

getAndUpdSchedule

:: (Schedule -> (c, Schedule))

-> (Person -> (c, Person))

getAndUpdSchedule f pers =

(\scheduleNew -> pers { schedule = scheduleNew }) `on`

f (schedule pers)

where

on :: (Schedule -> Person) -> ((c, Schedule) -> (c, Person))

on f (x, shed) = (x, f shed)

Gettable
getAndUpdSchedule

:: Gettable f

=> (Schedule -> f Schedule)

-> (Person -> f Person)

getAndUpdSchedule f pers =

(\scheduleNew -> pers { schedule = scheduleNew }) `on`

f (schedule pers)

class Gettable (f :: * -> *) where

on :: (a -> b) -> (f a -> f b)

instance Gettable ((,) c) where

on f (c, a) = (c, f a)

instance Gettable Identity where

on f = Identity . f . runIdentity

Settable

modifyEvent

:: (Maybe Event -> Identity (Maybe Event))

-> (Schedule -> Identity Schedule)

modifyEvent f sch =

Identity $ \day -> runIdentity (f (sch day))

modifyEvent

:: (Maybe Event -> Identity (Maybe Event))

-> (Schedule -> Identity Schedule)

modifyEvent f sch = dist $ \day -> f (sch day)

where

dist :: (a -> Identity b) -> Identity (a -> b)

dist h = Identity $ \x -> runIdentity (h x)

Settable
modifyEvent

:: (Maybe Event -> Identity (Maybe Event))

-> (Schedule -> Identity Schedule)

modifyEvent f sch = dist $ \day -> f (sch day)

where

dist :: (a -> Identity b) -> Identity (a -> b)

dist h = Identity $ \x -> runIdentity (h x)

modifyEvent

:: (Maybe Event -> Identity (Maybe Event))

-> (Schedule -> Identity Schedule)

modifyEvent f sch = dist $ \day -> f (sch day)

where

dist :: Functor g => g (Identity b) -> Identity (g b)

dist h = Identity $ fmap runIdentity h

Settable
modifyEvent

:: Settable f

=> (Maybe Event -> f (Maybe Event))

-> (Schedule -> f Schedule)

modifyEvent f sch = dist $ \day -> f (sch day)

class Gettable f => Settable f where

dist :: Functor g => g (f a) -> f (g a)

instance Settable Identity where

dist h = Identity $ fmap runIdentity h

Composing uncomposable

person &

((getAndUpdFather . getAndUpdSchedule . modifyEvent)

`modify` eraseWedding)

Getter Person Person

Getter Person Schedule

Setter Schedule (Maybe Event)

Setter Person Schedule

Setter Person Person

Multi selection

data Human

= Orphan

{ name :: String }

| Parented

{ name :: String

, parent1 :: Human

, parent2 :: Human

}

Multi selection

(a -> a) -> (b -> b)

(a -> (c, a)) -> (b -> (c, b))

(a -> ([c], a)) -> (b -> ([c], b))

type UpdateWithMultiPayload c b a =

(a -> ([c], a)) -> (b -> ([c], b))

modifyParents :: UpdateWithMultiPayload c Human Human

modifyParents _ (Orphan s) = ([], Orphan s)

modifyParents f (Parented s x y) =

let (c1, x') = f x

(c2, y') = f y

in (c1 ++ c2, Parented s x' y')

Multi

type Setter b a =

forall f. Settable f => (a -> f a) -> (b -> f b)

type Getter b a =

forall f. Gettable f => (a -> f a) -> (b -> f b)

type Multi b a =

forall f. Multiple f => (a -> f a) -> (b -> f b)

class Gettable f => Multiple f

class (Gettable f, Multiple f) => f Settable

instance Multiple ((,) [c])

Multi

modifyParents :: UpdateWithMultiPayload c Human Human

modifyParents _ (Orphan s) =

let unit :: Human -> ([c], Human)

unit a = ([], a)

in unit (Orphan s)

modifyParents2 f (Parented s x y) =

let x' = f x

y' = f y

tuple :: ([c], Human) -> ([c], Human)

-> ([c], (Human, Human))

tuple (c1, a) (c2, b) = (c1++c2, (a, b))

in (\(a,b) -> Parented s a b) `on` (tuple x' y')

Multi

modifyParents :: Multi Human Human

modifyParents _ (Orphan s) = unit $ Orphan s

modifyParents f (Parented s x y) =

(\(a,b) -> Parented s a b) `on` (f x `tuple` f y)

instance Multiple ((,) [c]) where

unit a = ([], a)

tuple (c1, a) (c2, b) = (c1++c2, (a, b))

class Gettable f => Multiple f where

unit :: a -> f a

tuple :: f a -> f b -> f (a, b)

Multi
modifyName :: Getter Human String

modifyName f (Orphan s) =

(\s' -> Orphan s') `on` f s

modifyName f (Parented s x y) =

(\s' -> Parented s' x y) `on` f s

human &

((modifyParents . modifyName)

`modify` (++ " the parent"))

Multi Human Human Getter Person Schedule

Setter Human Human Multi Person Schedule

Setter Person Schedule

Multi: clients

toList :: Multi b a -> b -> [a]

toList multi b =

let (as, _b') = multi (\a -> ([a], a)) b

in as

Summary
type Setter b a = forall f. Settable f => (a -> f a) -> (b -> f b)

type Getter b a = forall f. Gettable f => (a -> f a) -> (b -> f b)

type Multi b a = forall f. Multiple f => (a -> f a) -> (b -> f b)

Gettable

Multi

Settable

((,) c)

((,) [c])

Identity

get :: b -> a

toList :: b -> [a]

modify :: (a -> a)

-> (b -> b)

set :: a -> b -> b

Polymorphic updates

data Positioned p e = Positioned

{ position :: p

, element :: e

}

changePosition

:: (p -> p')

-> (Positioned p e -> Positioned p' e)

Polymorphic updates

type Multi' s t a b = forall f. Multiple f => (a -> f b) -> (s -> f t)

type Getter' s t a b = forall f. Gettable f => (a -> f b) -> (s -> f t)

type Setter' s t a b = forall f. Settable f => (a -> f b) -> (s -> f t)

modifyPosition :: Getter' (Positioned p e) (Positioned p' e) p p'

modifyPosition f (Positioned p e) = (\p' -> Positioned p' e) `on` f p

modify' :: Setter' s t a b -> (a -> b) -> (s -> t)

modify' setter f b =

let Identity b' = setter (Identity . f) b

in b'

sqrtPosition :: Positioned Int Apple -> Positioned Double Apple

sqrtPosition = modify' modifyPosition (sqrt . fromIntegral)

Lens package

class (Gettable f, Multiple f)

=> Settable f

class Gettable f => Multiple f

class Gettable f

(class Functor f => Distributive f,

Applicative f)

class Functor f => Applicative f

class Functor f

type Setter s t a b =

forall f. (Distributive f, Applicative f, Traversable f) =>

(a -> f b) -> (s -> f t)

type Lens s t a b = forall f. Functor f => (a -> f b) -> (s -> f t)

type Traversal s t a b =

forall f. Applicative f => (a -> f b) -> (s -> f t)

type Setter' s t a b = forall f. Settable f => (a -> f b) -> (s -> f t)

type Getter' s t a b = forall f. Gettable f => (a -> f b) -> (s -> f t)

type Multi' s t a b = forall f. Multiple f => (a -> f b) -> (s -> f t)

Questions?

Lenses prerequisites

* first-class functions

* higher-order types

* parametric polymorphism

* ah-hoc polymorphism (type classes)

* higher-rank polymorphism

